Table of Contents

  1. Parallel Tool Use Hiding I/O Latency
  2. Hypothesis Generation to Strategic Exploration
  3. Parallel Evaluation for Robust Governance
  4. Speculative Execution for Hyper-Responsive Agents
  5. Hierarchical Agent Teams for Superior Quality
  6. Competitive Agent Ensembles
  7. Agent Assembly Line for High-Volume Processing
  8. Decentralized Blackboard Collaboration
  9. Redundant Execution for Fault Tolerance
  10. Parallel Query Expansion to Maximize Recall
  11. Sharded & Scattered Retrieval
  12. Parallel Hybrid Search Fusion for High-Fidelity Context
  13. Parallel Context Pre-processing for Accuracy Gains
  14. Multi-Hop Retrieval for Deep Reasoning
    1. 在我的知识星球,我们不谈虚的
    2. 如果你有场景和困难, 欢迎找我聊聊AI

 primarily focusing on parallelism and intelligent orchestration.

It argues that by breaking down complex tasks, leveraging specialized agents, and optimizing execution flows, AI systems can achieve superior performance, reliability, and accuracy compared to monolithic approaches.

核心方法: 1.breaking down complex tasks 2.leveraging specialized agents 3.optimizing execution flows

performance, reliability, and accuracy compared to monolithic approches. 示例图

Parallel Tool Use Hiding I/O Latency

示例图 A sequential process would take 10–30 seconds, while a parallel one would still take only 2–3 seconds.

Hypothesis Generation to Strategic Exploration

示例图

Finally, a “judge” agent evaluates the competing solutions and selects the single best one. This creates a system that is more robust, more creative, and less likely to get stuck on a suboptimal path.

Parallel Evaluation for Robust Governance

示例图- 问题: 依赖单个AI模型进行复杂内容的评估(例如,广告文案、新闻稿、政策文件)时,该模型可能存在偏见、知识盲区或能力不足,无法全面考虑所有相关因素。例如,一个擅长判断品牌调性的AI可能不擅长事实核查,反之亦然。这可能导致评估结果不全面、不准确,甚至产生风险。

  • 解决方案: 该模式通过引入一个“专家小组”——多个具有不同专业视角(如事实核查、品牌调性、法律合规、风险评估)的AI评论员,确保内容从多个维度得到全面、深入的审查。每个AI专注于其擅长的领域,大大提高了评估的覆盖面和专业性。

Speculative Execution for Hyper-Responsive Agents

示例图

While the agent is thinking, the system makes an educated guess about the upcoming action and starts it.

Hierarchical Agent Teams for Superior Quality

示例图 question: But complex tasks are often unexpected or unseen, requiring the agent to decide what and when to execute, introducing a delay between planning and action.

Competitive Agent Ensembles

示例图 question: In an agentic solution, each AI agent has its own biases, strengths, and weaknesses.

Agent Assembly Line for High-Volume Processing

示例图

本质是个MQ队列.

Decentralized Blackboard Collaboration

示例图

question : But what about problems where the solution path is not known in advance? For complex sense-making or analysis tasks, a more flexible, adaptive approach is required. 本质: 共享记忆, 事件驱动

Redundant Execution for Fault Tolerance

示例图 本质: 用钱买稳定性.

Parallel Query Expansion to Maximize Recall

示例图 本质: 扩大用户的语意范围,提高召准确度

Sharded & Scattered Retrieval

示例图 大库的问题: 筛选的不精准, 相似度为89.99的可能有1000个 本质: 按领域分库, 精准查找

Parallel Hybrid Search Fusion for High-Fidelity Context

示例图

本质: 相似不等于相关, 扩大召回

Parallel Context Pre-processing for Accuracy Gains

示例图

上下文腐化问题: However, passing this large, often noisy, collection of documents directly into the final generator LLM context window is problematic.

Multi-Hop Retrieval for Deep Reasoning

示例图

原文: https://levelup.gitconnected.com/building-the-14-key-pillars-of-agentic-ai-229e50f65986


在我的知识星球,我们不谈虚的

我希望能找到AI与应用上的融合: AI的技术被商业赋能, 商业将AI的价值放大.

这里有企业家、创业者、独立开发者、AI极客, 我们有微信群, 可以一起交流. 希望可以给大家创造更大的机会.

我一直在一线做AI落地. 我希望这些经验可以帮到你.

欢迎加入我们,思考技术对商业的价值.

示例图

如果你有场景和困难, 欢迎找我聊聊AI

  1. 可以找AI咨询
  2. 可以找我AI落地

我的微信: leigeaicom

Written by

雷哥(微信:leigeaicom)

带你AI编程和AI工程化落地, 让你少走弯路, 做更有价值的创造者.

大家一起来讨论